Characterization of lower Barnett unconventional source rocks Midland Basin, Texas

Study area

- The study area (C-Ranch) is located at the intersections of Andrews, Martin, Ector, and Midland counties.
- Red star shows Fasken Fee BK 1514 core location

Purpose

- Describe the lower Barnett on the C-Ranch
 - Define Lithofacies
 - Develop stratigraphic framework
 - Determine depositional environment
- Evaluate source rock and reservoir potential
 - Geochemical analysis of organic matter
 - Petrophysical analysis of reservoir facies
 - Provide recommendations for exploration

Osterlund (2012) Usage in this paper Pennsylvanian **U.B.6 U.B.5 U.B.4 Upper Barnett U.B.3 U.B.2** U.B.1 L.B.3 **Lower Barnett** L.B.2 L.B.1

Mississippian Lime

Woodford Shale

Stratigraphy and Structure

Structure

- Structure contour of the top of the lower Barnett generated from 3D seismic and well control
- Depth to the top of the lower Barnett from sea level ranges from -7000 feet in the west to -9400 feet in the east

Upper Barnett	U.B.6	
	U.B.5	
	U.B.4	
	U.B.3	
	U.B.2	
	U.B.1	
Lower Barnett	L.B.3	
	L.B.2	
	L.B.1	

Lithofacies

Facies 1. Fine to medium argillaceous siliceous mudstone; Pyritic, nodular, lenticular, laminated to massive

Average porosity = 1.08% Average permeability = 0.0001mD

Facies 2. Medium to coarse siliceous calcareous to siliceous argillaceous mudstone; Laminated to burrowed

Average porosity = 1.52% Average permeability = 0.02mD

Facies 3. Skeletal wackestone-packstone to rudstone

Facies 4. bioclastic packstone-wackestone; Massive to burrowed

Average porosity = 1.77% Average permeability = 0.05mD

Facies 5. Laminated bioclastic packstone to grainstone

Facies 6. Dolomite packstone

Average porosity = 0.93% Average permeability = 0.0001mD

Depositional Processes

- Facies 1, 2, and 4 are dominant facies in core
- Accumulation by:
 - Downslope processes
 - Density flows
 - Turbidites
 - Suspension settling
- These beds often show signs of reworking suggesting bottom currents were prevalent
 - Scours
 - Mudclasts
 - Phosphatic peloids
- Beds of facies 3 and 5 appear to record uncommon events
 - Facies 3 beds record debris flows
 - Facies 5 beds record possible grain flows derived from shallow water
- Facies 6 is problematic but comprises a very small portion of the core

Phosphate

- "In Situ"
 - Pristine
- Reworked
 - Condensed
 - Allochthonous

Lithofacies Distribution in lower Barnett

Core description legend

L.B.1

- Approximately 56 feet thick
- Mixed carbonate-siliciclastic system
- Dominated by facies 2 (light gray)
- Interbeded facies 4 (green)
- Thin beds of skeletal rich facies 3 near top (blue)
- Bioturbation (distal Cruziana ichnofacies) decreases upwards through L.B.1
- TOC increases upwards

Lower Barnett	L.B.3
	L.B.2
	L.B.1

L.B.2

- Approximately 50 feet thick
- Dominated by facies 2 (light gray) and facies 1 (dark gray)
- Interbedded facies 3 (blue)
- Increased bioturbation at base which diminishes upward
- Upward transition from distal Cruziana to Zoophycos (becoming less oxygenated and has a less cohesive substrate)
- Becomes more argillaceous towards top in facies 1

L.B.3

- Approximately 72 feet thick
- Dominated by facies 1 (dark gray)
- Facies 5 beds are near the base (red)
- Facies 6 beds (purple)
- Most argillaceous and TOC rich subunit
- Contains abundant phosphate nodules and laminae
- Only one bed contained burrows near the base of the subunit

Lower Barnett	L.B.3	
	L.B.2	
	L.B.1	

Depositional conditions

- Outer ramp to basin
- Facies 2 and 4 record more proximal deposition likely sourced from mid ramp
- Facies 1 records more distal deposition dominated by dilute turbidites and suspension settling
- Lower Barnet strata record an overall deepening

Organic Matter

Geochemical requirements for organic matter in effective source rocks

- Quantity measured as total organic carbon (TOC)
- Quality or type of organic matter (OM)
 - Kerogen type:
 - I Lacustrine (oil prone)
 - II marine algal (oil and gas prone)
 - III terrestrial plant material (gas prone)
 - IV inert (heavily oxidized or recycled organic matter)
- Thermal maturity

Quantity

- Fasken Fee BK 1514 samples contain up to 7.62% TOC with an average of 4.02% TOC
- TOC values increase upwards through the core

Geochemical parameters describing petroleum potential of an immature source rock

Petroleum	Organic Matter			
	TOC	Rock-Eval Pyrolysis		
Potential	(wt. %)	S ₁ a	S ₂ b	
Poor	0-0.5	0-0.5	0-2.5	
Fair	0.5-1	0.5-1	2.5-5	
Good	1–2	1-2	5-10	
Very Good	2–4	2-4	10-20	
Excellent	>4	>4	>20	

Peters and Cassa (1994)

Quality

- Hydrogen index plots near 100 for the BK 1514 and BE 724 wells
- This figure would suggest mostly type III kerogens
- S₂/TOC graphs are less reliable kerogen type predictors at maturities over 1.0% R_o

Table 5.2. Geochemical Parameters Describing Kerogen Type (Quality) and the Character of Expelled Products^a

	HI	S ₂ /S ₃	Atomic H/C	Main Expelled Product at Peak Maturity
Kerogen Type	(mg HC/g TOC)			
Í	>600	>15	>1.5	Oil
11	300-600	10-15	1.2-1.5	Oil
11/1 11 p	200-300	5-10	1.0-1.2	Mixed oil and gas
414	50–200	1–5	0.7-1.0	Gas
1V	<50	<1	<0.7	None

aBased on a thermally immature source rock. Ranges are approximate.

bType II/III designates kerogens with compositions between type II and III pathways (e.g., Figure 5.1) that show intermediate HI (see Figures 5.4-5.11).

SEM imaging of lower Barnett samples confirmed primarily amorphous organic matter

- Compacted amorphous OM (most common)
 - Type II kerogen

- Structured OM grain (less common)
 - Type III kerogen

Thermal maturity

- Multiple datasets
 - Estimated R_o% from TAI for lower Barnett samples are 0.6% to 0.8%
 - Alginite fluorescence: orange color indicates early oil window
 - Two vitrinite reflectance samples averaged 1.07 R_o%
 - Tmax from pyrolysis averaged 463 °C or between 1.0% and 1.3% equivalent $R_{\rm o}$

Mineralogy and T_{max}

- T_{max} values range from 451 °C to 471 °C
- T_{max} values increase with increased clay (Al₂O₃) and decreased carbonate (CaO)
- T_{max} was likely influenced by mineral matrix
- Shifts in T_{max} cannot be explained by geothermal gradient

Organopores

- Primary pore types in the L.B.3 subunit:
 - Interparticle organopores in OM grains

- Primary pore types in the L.B.3 subunit:
 - Interparticle organopores in OM grains
 - Intracrystaline pores in pyrite framboids

- Primary pore types in the L.B.3 subunit:
 - Interparticle organopores in OM grains
 - Intracrystaline pores in pyrite framboids
- Organopore morphology:
 - Spongy irregular connected nanopores (common)

- Primary pore types in the L.B.3 subunit:
 - Interparticle organopores in OM grains
 - Intracrystaline pores in pyrite framboids
- Organopore morphology:
 - Spongy irregular connected nanopores (common)
 - Round to oval micropores (rare)

- Primary pore types in the L.B.3 subunit:
 - Interparticle organopores in OM grains
 - Intracrystaline pores in pyrite framboids
- Organopore morphology:
 - Spongy irregular connected nanopores (common)
 - Round to oval micropores (rare)
 - Angular micropores (rare)

• Angular, compaction resistant OM grains interpreted to be plant material (type III kerogen) lack pore development

- Organic matter within phosphatic peloid
- Euhedral cement at margins of grain
- Interpreted to be migrated HC that filled interparticle pore during initial HC generation.
- Organopores developed during later stages of maturation

- SEI image of pore within phosphatic peloid
- Euhedral cement lining pore walls
- It is likely that phosphatic peloids preserved interparticle porosity during compaction of the host rock
- Therefore presence of phosphatic peloids may enhance reservoir properties where abundant

Conclusions & Recommendations

Conclusions

- The lower Barnett was deposited in an outer ramp to basinal setting below storm wave base
- Deposition occurred as downslope transport by density flows and debris flows and a common reworking mechanism prevailed
- Overall, lower Barnett records a rise in sea level
 - Decrease in grainsize, bed thickness upwards
 - Decrease in bioturbation upwards and shift from more proximal to more distal ichnofacies
 - Increase in clay deposition and OM preservation upwards
 - Increase in redox sensitive trace elements upwards
- OM analysis suggest sufficient OM content, quality and maturity to have generated hydrocarbons

Recommendations

- Hydrocarbons produced in the study area will likely be a combination of gas and condensates
- The OXY MF 185H produced 340,690 barrels of condensate and 2,176,198 MCFG between March 11, 2019 and April 30, 2021.
- High clay composition in the TOC rich L.B.3 subunit could present challenges to drilling
- Reservoir properties of the L.B.1 and lower L.B.2 are more ideal
 - Highest porosity and permeability
 - Silt and calcite rich facies are more ideal for fracture propagation
- Sheet like deposits of facies 4 such as the L.B.1 marker are a favorable target for geosteering efforts

Acknowledgements

- Fasken Oil and Ranch Ltd.
- Bob Lindsay
- Stonnie Pollock

Questions?